
Lectures 4 & 5: Feed-forward Neural Networks
Deep Learning for Actuarial Modeling

36th International Summer School SAA
University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

2025-09-09

1/74

Feed-forward neural networks

1 Feed-forward neural networks

2 Universality theorems

3 Gradient descent algorithm

4 FNN example: French MTPL data

2/74

Feed-forward neural networks

Feed-forward neural networks

Overview

This lecture introduces feed-forward neural networks (FNNs), it explains
the building blocks of FNNs, and it shows how FNNs can be seen as
an extension of GLMs. This lecture will also lay the foundation for
more sophisticated deep learning methods. Moreover, we spend quite
some time on explaining gradient descent fitting.

This lecture covers Chapter 5 of Wüthrich et al. (2025).

2/74

Feed-forward neural networks

Feature extractor and GLM readout

3/74

Feed-forward neural networks

In a nutshell, networks perform representation learning, meaning that
multi-layer networks learn in each layer of their architecture a new
representation of the covariates X (inputs).

This multi-layer module is illustrated by the feature extractor in the
blue box of the graph.

This newly learned representation of the feature extractor then serves
as the new covariates for a (generalized) linear model, called readout
and illustrated by the green box in the graph.

Formally, one can write this as

X 7→ µ(X) = g−1
〈
w (d+1), z(d :1)(X)

〉
,

and we will introduce all building blocks of this archhitecture.

4/74

Feed-forward neural networks

Feed-forward neural network architecture

FNN architectures consist of (hidden) FNN layers

z(m) : Rqm−1 → Rqm , m ≥ 1.

Each FNN layer performs a non-linear transformation of the covariates.

The main ingredients of such a FNN layer z(m) are:
(a) the number qm ∈ N of neurons (also called units);
(b) the non-linear activation function ϕ : R → R; and
(c) the network weights (representing part of the model parameter ϑ).

Items (a) and (b) are hyper-parameters selected by the modeler, and
the network weights of item (c) are parameters that are learned during
network training (model fitting).

We discuss these items in detail below.
5/74

Feed-forward neural networks

Select d FNN layers (z(m))d
m=1 with matching input and output

dimensions.

A feature extractor of depth d is obtained by the composition

X 7→ z(d :1)(X) :=
(
z(d) ◦ · · · ◦ z(1)

)
(X) ∈ Rqd .

The input dimension of the 1st FNN layer z(1) is the dimension of the
covariates X ∈ Rq, that is, q0 = q.

The following graph illustrates a FNN architecture of depth d = 2:
with input dimension q0 = q = 5, i.e., X = (X1, . . . , X5)⊤, and

units q1 = 7 and q2 = 3 in the two FNN layers.

6/74

Feed-forward neural networks

Illustration of a FNN architecture of depth d = 2.

X5

X4

X3

X2

X1

Y

7/74

Feed-forward neural networks

The final step of the FNN architecture is the readout function on the
feature extracted information

X 7→ µ(X) = g−1
〈
w (d+1), z(d :1)(X)

〉
,

with readout parameter w (d+1) ∈ Rqd +1 and inverse link function g−1.

There remains the discussion of the specification of the FNN layers

z(m) : Rqm−1 → Rqm , 1 ≤ m ≤ d .

This is done next.

8/74

Feed-forward neural networks

Activation functions

Since feature extractors should be able to extract non-linear structure of the
original covariates, non-linear activation functions ϕ are needed. Commonly
used examples are:

name activation function ϕ derivative ϕ′

sigmoid (logistic) ϕ(x) = σ(x) =
(1 + e−x)−1

ϕ(1 − ϕ)

hyperbolic tangent
(tanh)

ϕ(x) = tanh(x) =
2σ(2x) − 1

1 − ϕ2

rectified linear unit
(ReLU)

ϕ(x) = x1{x≥0} 1{x>0}, x ̸= 0

sigmoid linear unit
(SiLU)

ϕ(x) = xσ(x) σ(x)(1 − ϕ(x)) + ϕ(x)

Gaussian error linear
unit (GELU)

ϕ(x) = xΦ(x) Φ(x) + xΦ′(x)

9/74

Feed-forward neural networks

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

(non−linear) activation functions

x

ph
i(x

)

sigmoid
tanh
ReLU
SiLU
GELU

10/74

Feed-forward neural networks

−3 −2 −1 0 1 2 3

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
derivatives of activation functions

x

ph
i'(

x)

sigmoid
tanh
ReLU
SiLU
GELU

11/74

Feed-forward neural networks

The presented activation functions have different properties, e.g.:
sigmoid and tanh are bounded which can be an advantage or a
disadvantage, depending on the problem to be solved.

tanh is symmetric in zero which can be an advantage over the sigmoid in
deep neural network fitting (because there is a natural calibration to zero
that does not require to adjust biases).

ReLU is an activation function that is very popular in the machine
learning community that can lead to sparsity in the activations, it is not
differentiable in zero but it has a sub-gradient (it is convex).

SiLU is a smooth version of ReLU, but it is neither monotone nor convex.

GELU has recently gained popularity in transformer architectures.

For fast gradient descent fitting it is important for ϕ to have a simple
derivative.

It is difficult to give a general advise for a specific selection of the
‘best’ activation function, but this is part of hyper-parameter tuning.

12/74

Feed-forward neural networks

Feed-forward neural network layer

Select an activation function ϕ.

Define the FNN layer z(m) : Rqm−1 → Rqm as follows

z(m)(x) =
(
z(m)

1 (x), . . . , z(m)
qm (x)

)⊤
, for x ∈ Rqm−1 ,

with neurons (units), for 1 ≤ j ≤ qm,

z(m)
j (x) = ϕ

(
w (m)

j,0 +
qm−1∑
k=1

w (m)
j,k xk

)
=: ϕ⟨w (m)

j , x⟩.

w (m)
j = (w (m)

j,0 , . . . , w (m)
j,qm−1

)⊤ ∈ Rqm−1+1 are called network weights.

Each neuron z(m)
j performs a GLM operation (data compression).

13/74

Feed-forward neural networks

Illustration of GLM operations (data compressions) in the (two) neurons.

X5

X4

X3

X2

X1

Y

Since each data compression results in a loss of information, one needs
multiple neurons to extract different relevant information.

14/74

Feed-forward neural networks

Summary: Feed-forward neural network architecture

Each FNN layer z(m) has network weights (w (m)
1 , . . . , w (m)

qm) of
dimension qm(qm−1 + 1).

Collecting all network weights of all layers, including the readout
parameter, gives all the network weights

ϑ =
(
w (1)

1 , . . . , w (d)
qd , w (d+1)

)
∈ Rr ,

of dimension r = ∑d
m=1 qm(qm−1 + 1) + (qd + 1).

Indicating the network parameter results in the FNN architecture

X 7→ µϑ(X) = g−1
〈
w (d+1), z(d :1)(X)

〉
.

15/74

Feed-forward neural networks

These FNN architectures give a class of parametric regression functions
M = {µϑ}ϑ, parametrized through the network weights ϑ ∈ Rr .

In summary, a FNN architecture is determined by the hyper-parameters:
(a) the depth d of the FNN architecture;
(b) the numbers qm of neurons in the hidden layers z(m), 1 ≤ m ≤ d ;
(c) the non-linear activation function ϕ : R → R in all the neurons; and
(d) the output activation g−1.

The network weights ϑ ∈ Rr represent the model parameter that
parametrizes this family M = {µϑ}ϑ of FNN architectures.

16/74

Feed-forward neural networks

Feature extractor and GLM readout, revisited

17/74

Feed-forward neural networks

Example

We discuss the above FNN example of depth d = 2:
It has a 16-dimensional covariate vector X providing q0 = q = 16.

The 1st hidden layer z(1) : Rq0 → Rq1 has q1 = 8 neurons providing
8 · 17 = 136 network weights.

The 2nd hidden layer z(2) : Rq1 → Rq2 has q2 = 8 neurons providing
8 · 9 = 72 network weights.

The readout parameter has dimension 9.

Altogether this FNN architecture has network weights ϑ ∈ Rr of
dimension r = 217.

18/74

Feed-forward neural networks

We implement this FNN architecture in R-Keras using the log-link
g(·) = log(·).

We additionally allow for a multiplicative exposure scaling using the
volumes v > 0 (for more discussion, see the Poisson GLM).

load the necessary libraries

library(tensorflow)
library(keras)

keras3 requires small adaptions to the code below because indices in
arrays are shifted from keras2 to keras3↪→

19/74

Feed-forward neural networks

define a FNN architecture function of depth d=2 (qq gives the units)
FNN <- function(seed, qq){

k_clear_session()
set.seed(seed)
set_random_seed(seed)
Design <- layer_input(shape = c(qq[1]), dtype = 'float32')
Volume <- layer_input(shape = c(1), dtype = 'float32')
Network = Design %>%

layer_dense(units=qq[2], activation='tanh') %>%
layer_dense(units=qq[3], activation='tanh') %>%
layer_dense(units=1, activation='exponential')

Response = list(Network, Volume) %>% layer_multiply()
keras_model(inputs = c(Design, Volume), outputs = c(Response))
}

define the FNN architecture/model from the above graph
(model <- FNN(seed=100, qq=c(16, 8, 8)))

20/74

Feed-forward neural networks

Model: "model"
__
Layer (type) Output Shape Param Connected to

#
==
input_1 (InputLayer) [(None, 16)] 0 []
dense_2 (Dense) (None, 8) 136 ['input_1[0][0]']
dense_1 (Dense) (None, 8) 72 ['dense_2[0][0]']
dense (Dense) (None, 1) 9 ['dense_1[0][0]']
input_2 (InputLayer) [(None, 1)] 0 []
multiply (Multiply) (None, 1) 0 ['dense[0][0]',

'input_2[0][0]']
==
Total params: 217 (868.00 Byte)
Trainable params: 217 (868.00 Byte)
Non-trainable params: 0 (0.00 Byte)
__

21/74

Universality theorems

1 Feed-forward neural networks

2 Universality theorems

3 Gradient descent algorithm

4 FNN example: French MTPL data

22/74

Universality theorems

Universality theorems

The main universality theorem states that ‘any compactly supported
continuous (regression) function can be approximated arbitrarily well by
a suitable (and sufficiently large) FNN’.

This approximation can be w.r.t. different norms and the assumptions
for such a statement to hold are comparably weak, e.g., the sigmoid
activation function leads to a class of FNNs that are universal in the
above sense.

For precise mathematical statements and proofs about these denseness
results, see Cybenko (1989), Hornik, Stinchcombe and White (1989),
Hornik (1991) and Leshno et al. (1993); and there is a vast literature
with similar statements and proofs.

22/74

Universality theorems

Consequences for networks

The universality statements imply that basically any regression function
can be approximated arbitrarily well within the class of FNNs.

This sounds very promising:
It means that the class of FNNs is very rich and flexible.

No matter what the specific true data generating model looks like, there
is a FNN that is similar to this data generating mechanism, and our aim
is to find it using the learning sample L that has generated that data.

23/74

Universality theorems

Unfortunately, there is a backside of this coin:
There is no hope to find ‘the best’ FNN (on finite samples), and there
are infinitely many (almost equally) good candidate FNNs. Typically, one
can only distinguish clearly better from clearly worse on finite samples.

The model selection/fitting problem is very high-dimensional and
non-convex (for any reasonable choice of objective function).

Model selection within the class of FNN involves several elements of
randomness, e.g., a fitting algorithm needs to be (randomly) initialized
and this impacts the selected solution. To be able to replicate results,
seeds of random number generators need to be stored.

Some of the previous items will only become clear once we have
introduced stochastic gradient descent fitting, and one should keep
these (critical) items in mind for the discussions below.

24/74

Gradient descent algorithm

1 Feed-forward neural networks

2 Universality theorems

3 Gradient descent algorithm

4 FNN example: French MTPL data

25/74

Gradient descent algorithm

Gradient descent algorithm

Based on the non-uniqueness of a best FNN approximation to the true
model on finite samples, one tries to find a reasonably good FNN
approximation to the true data generating mechanism.

Reasonably good means that it usually outperforms a classical GLM,
but at the same time there are infinitely many other FNNs that have a
similarly good predictive performance (generalization to new data).

Due to the non-convexity and the complexity of the problem,
computational aspects are crucial in designing a good FNN training
algorithm.

The main tool is stochastic gradient descent (SGD).

25/74

Gradient descent algorithm

Objective function

Choose a strictly consistent loss function L for mean estimation.

Denote the learning sample by L = (Yi , X i , vi)n
i=1.

The empirical loss in network parameter ϑ on L is defined by

L(ϑ; L) := 1
n

n∑
i=1

vi
φ

L(Yi , µϑ(X i)),

where µϑ is a FNN with network weights ϑ ∈ Rr .

We add the learning sample L to the loss notation L(ϑ; L) because for
SGD we will vary over different learning (sub-)samples.

26/74

Gradient descent algorithm

Gradient descent step

Assume we have network weights ϑ[t] ∈ Rr at step t providing the
empirical loss L(ϑ[t]; L).

The goal is to stepwise adaptively improve these network weights

ϑ[t] 7→ ϑ[t+1],

such that the empirical loss decreases in each step t → t + 1.

Determine a small perturbation of ϑ[t] leading to a local improvement.

Local changes can be described by 1st order Taylor expansions

L
(
ϑ[t+1]; L

)
≈ L

(
ϑ[t]; L

)
+ ∇ϑL

(
ϑ[t]; L

)⊤ (
ϑ[t+1] − ϑ[t]

)
,

for ϑ[t+1] close to ϑ[t].

This becomes minimal if the last term is as negative as possible.
27/74

Gradient descent algorithm

Thus, the update in the network weights should point into the opposite
direction of the gradient.

This motivates the gradient descent update

ϑ[t] 7→ ϑ[t+1] = ϑ[t] − ϱt+1∇ϑL
(
ϑ[t]; L

)
,

where ϱt+1 > 0 is a (small) learning rate, also called step size.

The learning rate needs to be small for the 1st order Taylor expansion
to be a valid approximation. But the learning rate should not be too
small, otherwise we need too many gradient descent steps.

The initial value ϑ[0] of the gradient descent algorithm should be
selected at random to avoid starting the algorithm in a saddlepoint of
the loss surface ϑ 7→ L(ϑ; L).

Popular initializer: glorot-uniform of Glorot and Bengio (2010)
selecting a random uniform initialization adapted to the layer sizes.

28/74

Gradient descent algorithm

Open points

The following points need to be discussed:
(a) Covariate pre-processing.
(b) Efficient calculations of the gradients ∇ϑL(ϑ; L).
(c) Selection of the learning rate and higher order Taylor approximations.
(d) A stopping rule for the algorithm.
(e) Regularization and drop-out.
(f) Dealing with big data, i.e., big learning samples L.

These items are discussed in the following paragraphs.

29/74

Gradient descent algorithm

Covariate pre-processing

Covariate pre-processing is discussed in detail in the next lecture and
we just briefly highlight some important points here.

It is important for the gradient descent algorithm to work properly that
all covariate components live on the same scale. Otherwise some
covariate components will dominate the gradient, and the algorithm is
not able to extract systematic structure from all covariate components.

For this reason, continuous covariates should be standardized or the
MinMaxScaler should be applied (see next lecture).

If the skewness of a continuous covariate is large, i.e., if it lives on
different scales (magnitudes), one should first apply a
log-transformation.

30/74

Gradient descent algorithm

For categorical covariates usually one-hot encoding is used in the first
place (see next lecture).

High-cardinality categorical covariates lead to large input dimensions q0
to the feature extractor. This is generally problematic in network
fitting as it gives a high potential for over-fitting.

Generally, we recommend to use an entity embedding with a
low-dimensional embedding dimension b for categorical covariates.

The entity embedded variables are concatenated with the continuous
ones, to jointly enter the feature extractor of the FNN architecture.

More details are provided in the next lecture, but we briefly show an
example.

31/74

Gradient descent algorithm

Example: two-dimensional embedding (b = 2) of VehBrand and Region.

32/74

Gradient descent algorithm

Gradient calculation via back-propagation

Generally, gradient computations ∇ϑL(ϑ; L) are high-dimensional and
computationally intensive. The network weights ϑ enter the readout
and the different FNN layers (z(m))d

m=1 of the feature extractor.

Theoretically, the gradient can be worked out using standard calculus,
but through the iterated application of the chain-rule the computations
become very tedious.

The workhorse to compute these gradients efficiently is the
back-propagation method of Rumelhart, Hinton and Williams (1986).
Mathematically speaking, the back-propagation method is a clever
re-parametrization to efficiently compute these gradients recursively.

We skip more technical details about back-propagation, but refer to
the (ready-to-use) standard software, such as TensorFlow.

33/74

Gradient descent algorithm

Learning rate and higher order Taylor approximations

The gradient descent algorithm is based on a 1st order Taylor
expansion.

1st order Taylor expansions compute slopes and, hence, directions of
optimal local updates.

The optimal (directional) learning rates ϱt+1 > 0 are determined by
the curvature of the loss surface described by 2nd order derivatives
(Hessians) of the empirical loss ϑ 7→ L(ϑ; L), i.e., the Newton method.

Unfortunately, it is computationally unfeasible to compute Hessians in
(bigger) FNNs, therefore, we cannot determine the optimal learning
rates by 2nd order derivatives.

34/74

Gradient descent algorithm

Momentum based methods

In physics, 1st order derivatives are related to speed and 2nd order
derivatives to acceleration.

Since one cannot compute 2nd order derivatives, inspired by physics,
one mimics how speed and velocity build up by computing momentums
from past velocities. This is a way of mimicking 2nd order derivatives.

Standard momentum based algorithms are rmsprop or adam; see
Hinton, Srivastava and Swersky (2014), Kingma and Ba (2017).

We do not discuss this any further here, but we just use the
implemented methods, usually adam or its Nesterov (2007)
accelerated version nadam.

For transformers, there are more specialized gradient descent methods,
e.g., adamW of Loshchilov and Hutter (2019) which better adapts to
problems where the variables live on different scales.

35/74

Gradient descent algorithm

Early stopping

Having a reasonably large FNN architecture, is is very flexible because
it is capable to approximate a fairly large function class.

This implies that computing the MLE

ϑ̂MLE ∈ arg min
ϑ

L (ϑ; L) = arg min
ϑ

1
n

n∑
i=1

vi
φ

L(Yi , µϑ(X i)),

is not a sensible problem.

This MLE fitted FNN does not only extract the structural part
(systematic effects) from the learning sample L = (Yi , X i , vi)n

i=1, but
it also largely adapts to the noisy part (pure randomness) in L.

Obviously, such a FNN will badly generalize and it will have a poor
predictive performance on out-of-sample test data T .

36/74

Gradient descent algorithm

37/74

Gradient descent algorithm

The above figure gives an example that in-sample over-fits:
The black dots are the observed responses Yi (in learning sample L).

The true regression function is shown in green color.

The red graph shows a fitted regression model that in-sample over-fits to
the learning sample L. It follows the black dots quite closely,
significantly deviating from the true green regression function.

Out-of-sample (repeating this experiment), the black dots likely also lie
on the other side of the green line. Thus, the red estimated model
badly generalizes.

Consequently, within a highly flexible model class we need to try to find
a model that only extracts the systematic part from a noisy sample.

Early stopping is the crucial technology that solves this problem.

38/74

Gradient descent algorithm

Coming back to the gradient of the empirical loss

∇ϑL(ϑ; L) = 1
n

n∑
i=1

vi
φ

∇ϑL(Yi , µϑ(X i)).

This gradient consists of a sum of individual gradients over all
instances 1 ≤ i ≤ n.

Systematic effects impact many individual instances (otherwise they
would not be systematic).

At the beginning of the gradient descent algorithm, before having found
these systematic effects, they dominate the gradient descent steps.

Once these systematic effects are found, the relative importance of
instance-individual factors (noise) starts to increase.

This is precisely the time-point to early stop the algorithm.

39/74

Gradient descent algorithm

Training, validation and test samples

Implementation of early stopping requires a careful treatment of the
available learning sample L.

For this we partition the learning sample L at random into a training
sample U and a validation sample V.

The training sample U is used for computing the gradient descent
steps, and the validation sample V is used to track over-fitting by an
instantaneous (out-of-sample) validation analysis.

The test sample T is used to compare different models, i.e., it is not
used during model fitting.

40/74

Gradient descent algorithm

Training, validation and test samples: illustration

Training sample U , validation sample V and test sample T .

41/74

Gradient descent algorithm

Perform the gradient descent steps only on the training sample U

∇ϑL(ϑ; U) = 1
|U|

∑
i∈U

vi
φ

∇ϑL(Yi , µϑ(X i)).

Perform an instantaneous out-of-sample validation on V

L(ϑ[t]; V) = 1
|V|

∑
i∈V

vi
φ

L(Yi , µϑ[t](X i)).

Naturally, the training loss L(ϑ[t]; U) should decrease for t → ∞.

The validation loss L(ϑ[t]; V) decreases as long as systematic effects are
learned, then it increases (deteriorates) once the noisy part is learned.

This change of behavior gives the early stopping point t⋆, and the
network weights are estimated by ϑ̂ = ϑ[t⋆]; see next graph.

42/74

Gradient descent algorithm

43/74

Gradient descent algorithm

Concluding remarks on early stopping

The validation sample V should be sufficiently large so that a reliable
validation loss L(ϑ[t]; V) can be calculated, e.g., 10% or 20% of the
learning sample L.

The difference L(ϑ[t]; U) − L(ϑ[t]; V) can have any sign, this depends
on the specific random choices of U and V.

Practically, for gradient descent training, one installs a so-called
callback that saves every weight ϑ[t] which decreases the validation
loss L(ϑ[t]; V). After running the algorithm one calls back the weight
ϑ[t⋆] with the minimal validation loss.

44/74

Gradient descent algorithm

Regularization and drop-out

There is no difficulty in using a regularized loss in gradient descent
fitting; we discuss regularization in a later lecture.

A popular method to prevent from (in-sample) over-fitting is drop-out
by Srivastava et al. (2014) and Wager, Wang and Liang (2013).

Drop-out is an additional network layer between two FNN layers that
removes neurons z(m)

j at random from the network (only) during
gradient descent training (and in each gradient descent step
resampled). This regularizes gradient descent training and can lead to
better predictive models.

45/74

Gradient descent algorithm

Stochastic gradient descent

Typically, gradient computations on large samples involve large matrix
multiplications. These are very slow which hinders fast network fitting.

For this reason, use a stochastic gradient descent (SGD) algorithm.

For SGD one chooses a fixed batch size s ∈ N, and randomly partitions
the training sample U = (Yi , X i , vi)n

i=1 into (mini-)batches
U1, . . . , U⌊n/s⌋ of roughly the same size s.

One then considers the SGD updates

ϑ[t] 7→ ϑ[t+1] = ϑ[t] − ϱt+1∇ϑL
(
ϑ[t]; Uk

)
,

cyclically visiting the batches (Uk)⌊n/s⌋
k=1 .

46/74

Gradient descent algorithm

The size s ∈ N of the batches (Uk)⌊n/s⌋
k=1 should neither be too small

nor too big.

Assuming i.i.d. observations (Yi , X i , vi)s
i=1, the law of large numbers

gives the locally optimal gradient descent step for batch size s → ∞.

But computational reasons force us to choose small(er) batch sizes.
These may give certain erratic gradient descent updates.

However, some erratic steps can be beneficial for finding better network
weights, as long as these erratic steps are not too numerous (and not
too large): SGD only always considers the next best step, but this may
miss the long-run optimal step.

Certain erratic steps may help one to escape from saddlepoints or an
unwanted local optimal behavior.

That is, a few erratic steps lead to better fitted FNNs (this is similar to
explore vs. exploit in reinforcement learning).

47/74

Gradient descent algorithm

A summary on network training

We have now introduced the whole FNN toolbox, and we are ready to apply
our first FNN regression model!

The first attempts on real data will likely result in a disappointment
because working with FNNs requires quite some practical experience.

There is the recurrent question of how to select good FNN
architectures.

A general principle is to select a network architecture that is not too
small to be sufficiently flexible to approximate all potentially suitable
regression functions.

Generally, it is a bad guidance to attempt for a minimal FNN.

48/74

Gradient descent algorithm

Usually, there are many different, roughly equally good FNN
approximations to a given real data problem, and the SGD algorithm
can only find (some of) those if it has sufficiently many degrees of
freedom to exploit the (full) parameter space.

This contradicts parsimony, and is against actuarial thinking, but it is
required for successful SGD fitting.

Optimizing neural network architectures should not be the target, and
ensembling (discussed below) helps to reduce model variations.

49/74

FNN example: French MTPL data

1 Feed-forward neural networks

2 Universality theorems

3 Gradient descent algorithm

4 FNN example: French MTPL data

50/74

FNN example: French MTPL data

FNN example: French MTPL data

We revisit the French MTPL claims count data set ‘freMTPL2freq’ of
Dutang, Charpentier and Gallic (2024).

We use the data cleaning procedure of Wüthrich and Merz (2023).

We model these MTPL claims counts by fitting a FNN regression
function with log-link, and using the Poisson deviance loss.

We use one-hot encoding for categorical covariates (in detail explained
in the next lecture).

We use standardization for continuous covariates (in detail explained in
the next lecture).

We benchmark the FNN results by the GLM ones.

50/74

FNN example: French MTPL data

One-hot encoding (explained later)

We start by a one-hot encoding function that also adds suitable labels
to the columns of the design matrix.

function for one-hot encoding of categorical covariates;
this is based on the command to_categorical from the Keras library

PreProcess.OneHot <- function(var1, name, dat2){
names(dat2)[names(dat2) == var1] <- "V1"
XX <- data.frame(to_categorical(as.integer(dat2$V1)))
colnames(XX) <- paste0(name, c(1:ncol(XX)))
names(dat2)[names(dat2) == "V1"] <- var1
cbind(dat2, XX)
}

51/74

FNN example: French MTPL data

Standardization (explained later)

The following code standardizes the continuous covariates by centering
with the empirical mean and scaling with the standard deviation.

standardization of continuous covariates
PreProcess.Continuous <- function(var1, dat2){

names(dat2)[names(dat2) == var1] <- "V1"
dat2$X <- as.numeric(dat2$V1)
dat2$X <- (dat2$X-mean(dat2$X))/sd(dat2$X)
names(dat2)[names(dat2) == "V1"] <- var1
names(dat2)[names(dat2) == "X"] <- paste(var1,"X", sep="")
dat2
}

We apply this standardization simultaneously to the learning and to the
test data sets. For new data, one needs to store the scaling constants
to be able to pre-process new data in the identical way.

52/74

FNN example: French MTPL data

Load TensorFlow and Keras libraries

library(tensorflow)
library(keras) # this notebook uses Keras 2
#library(keras3) # Keras3 needs a slight adaption to the code below

This uses Keras 2, but there is also Keras 3.

A main difference between the two Keras versions is that arrays run
from 0 : n − 1 in the latter compared to 1 : n in the former. This needs
quite some care!

53/74

FNN example: French MTPL data

Covariate pre-processing for FNN fitting

Features.PreProcess <- function(dat2){
dat2 <- PreProcess.Continuous("Area", dat2) # transformed to continuous
dat2 <- PreProcess.Continuous("VehPower", dat2)
dat2$VehAge <- pmin(dat2$VehAge,20) # censoring at age 20
dat2 <- PreProcess.Continuous("VehAge", dat2)
dat2$DrivAge <- pmin(dat2$DrivAge,90) # censoring at age 90
dat2 <- PreProcess.Continuous("DrivAge", dat2)
dat2$BonusMalus <- pmin(dat2$BonusMalus,150) # censoring at level 150
dat2 <- PreProcess.Continuous("BonusMalus", dat2)
dat2 <- PreProcess.OneHot("VehBrand", "B", dat2)
dat2$VehGasX <- as.integer(dat2$VehGas)-1 # this is binary
dat2$Density <- round(log(dat2$Density),2) # log-scale and censoring
dat2 <- PreProcess.Continuous("Density", dat2)
PreProcess.OneHot("Region", "R", dat2) }

#
dat <- Features.PreProcess(dat)

54/74

FNN example: French MTPL data

Constructing learning and test samples

learning and test sample partition

learn <- dat[which(dat$LearnTest=='L'),]
test <- dat[which(dat$LearnTest=='T'),]

Important: Learning and test samples use the identical pre-processing.

We use the learning-test sample partition of Wüthrich and Merz (2023),
and all results are directly comparable to the ones in that reference.

Generally, the ordering of the data should be randomized, e.g., if the
data is ordered w.r.t. the accident year. This is important for the SGD
algorithm to work properly (we come back to this below).

One could also stratify the allocation to learning and test samples, so
that they are more similar, e.g., w.r.t. large claims.

55/74

FNN example: French MTPL data

Prepare data for FNN fitting

considered covariates
features <- c("AreaX", "VehPowerX", "VehAgeX", "DrivAgeX", "BonusMalusX",

"VehGasX", "DensityX", paste0("B", c(1:11)), paste0("R",
c(1:22)))↪→

learning and test samples
Xlearn <- as.matrix(learn[, features]) # design matrix learning sample
Xtest <- as.matrix(test[, features]) # design matrix test sample
Ylearn <- as.matrix(learn$ClaimNb) # response learning sample
Ytest <- as.matrix(test$ClaimNb) # response test sample
Vlearn <- as.matrix(learn$Exposure) # time exposure learning sample
Vtest <- as.matrix(test$Exposure) # time exposure test sample

56/74

FNN example: French MTPL data

FNN architecture of depth 3 (with one-hot encoding)

FNN <- function(seed, qq){ # tanh activations and log-link output
tf$keras$backend$clear_session()
set.seed(seed)
set_random_seed(seed)
Design <- layer_input(shape = c(qq[1]), dtype = 'float32')
Volume <- layer_input(shape = c(1), dtype = 'float32')
Network = Design %>% # depth d=3 network

layer_dense(units=qq[2], activation='tanh') %>%
layer_dense(units=qq[3], activation='tanh') %>%
layer_dense(units=qq[4], activation='tanh', name="FE") %>%
layer_dense(units=1, activation='exponential')

Response = list(Network, Volume) %>% layer_multiply()
keras_model(inputs = c(Design, Volume), outputs = c(Response))
}

57/74

FNN example: French MTPL data

Define FNN architecture

homogeneous mean (empirical frequency on learning sample);
this will be used to initialize the FNN to the homogeneous model
mu.hom <- sum(learn$ClaimNb)/sum(learn$Exposure)

define the FNN architecture
q0 <- length(features)
qq <- c(q0, c(20,15,10)) # selected FNN architecture
seed <- 100
model <- FNN(seed, qq)
model # illustrate the FNN architecture

58/74

FNN example: French MTPL data

Model: "model"
__
Layer (type) Output Shape Param Connected to

#
==
input_1 (InputLayer) [(None, 40)] 0 []
dense_2 (Dense) (None, 20) 820 ['input_1[0][0]']
dense_1 (Dense) (None, 15) 315 ['dense_2[0][0]']
FE (Dense) (None, 10) 160 ['dense_1[0][0]']
dense (Dense) (None, 1) 11 ['FE[0][0]']
input_2 (InputLayer) [(None, 1)] 0 []
multiply (Multiply) (None, 1) 0 ['dense[0][0]',

'input_2[0][0]']
==
Total params: 1306 (5.10 KB)
Trainable params: 1306 (5.10 KB)
Non-trainable params: 0 (0.00 Byte)
__

59/74

FNN example: French MTPL data

60/74

FNN example: French MTPL data

Initializing to the homogeneous model (without covariates)

initialize to the homogeneous model (this is an intercept only model)

w0 <- get_weights(model)
w0[[7]] <- array(0, dim=dim(w0[[7]])) # all signals are zero
w0[[8]] <- array(log(mu.hom), dim=dim(w0[[8]])) # only bias is non-zero
set_weights(model, w0)

We initialize the output weights so that we obtain the homogeneous
model, i.e., the null model not considering any covariates. This is done
by offsetting the output weights to receive an intercept-only model.

All other network weights are randomly initialized using the
glorot_uniform initializer of Glorot and Bengio (2010).

prediction in the homogeneous model
learn.hom <- model %>% predict(list(Xlearn, Vlearn), batch_size=10ˆ6)
test.hom <- model %>% predict(list(Xtest, Vtest), batch_size=10ˆ6)

61/74

FNN example: French MTPL data

In-sample and out-of-sample Poisson deviance losses

on L: 1∑n
i=1 vi

n∑
i=1

2vi

(
µ̂(X i) − Yi − Yi log

(
µ̂(X i)

Yi

))
,

on T : 1∑m
t=1 vt

m∑
t=1

2vt

(
µ̂(X t) − Yt − Yt log

(
µ̂(X t)

Yt

))
,

where the fitted model µ̂ uses the learning data L only.

Poisson.Deviance <- function(pred, obs, weight){ # scale 10ˆ2
10ˆ2 * 2*(sum(pred)-sum(obs)+sum(log((obs/pred)ˆ(obs))))/sum(weight) }

homogeneous case not considering any covariates

loss.hom <- round(c(Poisson.Deviance(learn.hom, Ylearn, Vlearn),
Poisson.Deviance(test.hom, Ytest, Vtest)), 3)↪→

loss.hom

[1] 47.722 47.967
62/74

FNN example: French MTPL data

Stochastic gradient descent fitting (with early stopping)

define the callback for early stopping

if (!dir.exists("./Networks")){dir.create("./Networks")}
path1 <- paste0("./Networks/FNN1_",seed,".h5")
CBs <- callback_model_checkpoint(path1, monitor = "val_loss", verbose =

0, save_best_only = TRUE, save_weights_only = TRUE)↪→

recall: w0 is initialized to the homogeneous model

model %>% compile(loss = 'poisson', optimizer = 'nadam')
#
fit <- model %>% fit(list(Xlearn, Vlearn), Ylearn,

validation_split=0.1, batch_size=5000, epochs=500,
verbose=0, callbacks=CBs)↪→

#
which.min(fit[[2]]$val_loss) # early stopping time

[1] 43
63/74

FNN example: French MTPL data

64/74

FNN example: French MTPL data

We take 10% of the learning sample L as validation data V. In Keras,
these are simply the last 10% of the instances of the learning sample.
Therefore, it is important that the learning sample has a randomized
order, because the algorithm does not automatically shuffle the data!

The levels of the training and validation losses depend on the partition
of the learning sample L into the training sample U and the validation
sample V. Here, V seems more typical, because it leads to a steeper
decrease of the loss during the first 40 gradient descent steps compared
to the training data U . This indicates that the systematic effects are
more dominant in the validation data, here.

Careful: The order of the learning sample and all seeds matter, and
other choices will provide other graphs and other results (with different
stopping times and different minimas).

65/74

FNN example: French MTPL data

FNN architecture: Poisson deviance results

load optimal weights (from early stopping)
load_model_weights_hdf5(model, path1)

compute FNN estimated predictive means
learn.NN <- model %>% predict(list(Xlearn, Vlearn), batch_size=10ˆ6)
test.NN <- model %>% predict(list(Xtest, Vtest), batch_size=10ˆ6)

compute in-sample and out-of-sample Poisson deviance losses
loss.FNN <- round(c(Poisson.Deviance(learn.NN, Ylearn, Vlearn),

Poisson.Deviance(test.NN, Ytest, Vtest)), 3)↪→

In-sample and out-of-sample Poisson deviance losses of the FNN model:

loss.FNN # => this outperforms the GLM (a summary is given below)

[1] 44.846 44.925

66/74

FNN example: French MTPL data

Results

We collect the results.

model in-sample loss out-of-sample loss balance (in %)

Poisson null model 47.722 47.967 7.36
Poisson GLM 45.585 45.435 7.36
Poisson FNN 44.846 44.925 7.17

The GLM results are taken from Table 5.5 in Wüthrich and Merz
(2023); this GLM considers all covariates like our FNN:

The deviance loss scaling in Wüthrich and Merz (2023) is different, and
the values of 24.084 and 24.102 from this reference need to be scaled by
n/
∑n

i=1 vi = 1.89 and m/
∑m

t=1 vt = 1.89 to receive our in-sample and
out-of-sample Poisson deviance loss scalings.

67/74

FNN example: French MTPL data

We note that the FNN outperforms the GLM, i.e., there are some
features in the data that cannot be captured by the proposed GLM.

From a Poisson simulation analysis we conclude that at least 42.726 of
the loss can be allocated to the irreducible risk (pure randomness), and
the difference is (probably model error).

The last column shows the average frequency over the whole portfolio.
We observe an under-estimation of the FNN, and we come back to this
issue when discussing the balance property.

We give clear preference to the FNN over the GLM.

68/74

Copyright

Copyright

© The Authors

This notebook and these slides are part of the project “AI Tools for
Actuaries”. The lecture notes can be downloaded from:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304

This material is provided to reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution and credit is given to the
original authors and source, and if you indicate if changes were made.
This aligns with the Creative Commons Attribution 4.0 International
License CC BY-NC.

69/74

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304

References

References I

Cybenko, G.V. (1989) ‘Approximation by superpositions of a sigmoidal
function’, Mathematics of Control, Signals and Systems, 2, pp. 303–314.
Available at: https://doi.org/10.1007/BF02551274.

Dutang, C., Charpentier, A. and Gallic, E. (2024) ‘Insurance dataset’.
Available at: https://dutangc.github.io/CASdatasets/.

Glorot, X. and Bengio, Y. (2010) ‘Understanding the difficulty of training
deep feedforward neural networks’, in Y.W. Teh and M. Titterington (eds)
Proceedings of the thirteenth international conference on artificial
intelligence and statistics. PMLR (Proceedings of machine learning
research), pp. 249–256. Available at:
https://proceedings.mlr.press/v9/glorot10a.html.

70/74

https://doi.org/10.1007/BF02551274
https://dutangc.github.io/CASdatasets/
https://proceedings.mlr.press/v9/glorot10a.html

References

References II

Hinton, G., Srivastava, N. and Swersky, K. (2014) ‘Neural networks for
machine learning’. Available at: https:
//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

Hornik, K. (1991) ‘Approximation capabilities of multilayer feedforward
networks’, Neural Networks, 4(2), pp. 251–257. Available at:
https://doi.org/10.1016/0893-6080(91)90009-T.

Hornik, K., Stinchcombe, M. and White, H. (1989) ‘Multilayer feedforward
networks are universal approximators’, Neural Networks, 2(5), pp. 359–366.
Available at: https://doi.org/10.1016/0893-6080(89)90020-8.

Kingma, D.P. and Ba, J. (2017) ‘Adam: A method for stochastic
optimization’. Available at: https://arxiv.org/abs/1412.6980.

71/74

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1412.6980

References

References III

Leshno, M. et al. (1993) ‘Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function’, Neural
Networks, 6(6), pp. 861–867. Available at:
https://doi.org/10.1016/S0893-6080(05)80131-5.

Loshchilov, I. and Hutter, F. (2019) ‘Decoupled weight decay regularization’.
Available at: https://arxiv.org/abs/1711.05101.

Nesterov, Y. (2007) ‘Gradient methods for minimizing composite objective
function’. Available at: https://cdn.uclouvain.be/public/Exports%20reddot
/core/documents/coredp2007_76.pdf.

72/74

https://doi.org/10.1016/S0893-6080(05)80131-5
https://arxiv.org/abs/1711.05101
https://cdn.uclouvain.be/public/Exports%20reddot/core/documents/coredp2007_76.pdf
https://cdn.uclouvain.be/public/Exports%20reddot/core/documents/coredp2007_76.pdf

References

References IV

Rumelhart, D., Hinton, G. and Williams, R. (1986) ‘Learning
representations by back-propagating errors’, Nature, 323, pp. 533–536.
Available at: https://doi.org/10.1038/323533a0.

Srivastava, N. et al. (2014) ‘Dropout: A simple way to prevent neural
networks from overfitting’, Journal of Machine Learning Research, 15(56),
pp. 1929–1958. Available at:
http://jmlr.org/papers/v15/srivastava14a.html.

Wager, S., Wang, S. and Liang, P. (2013) ‘Dropout training as adaptive
regularization’. Available at: https://arxiv.org/abs/1307.1493.

73/74

https://doi.org/10.1038/323533a0
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1307.1493

References

References V

Wüthrich, M.V. et al. (2025) ‘AI Tools for Actuaries’, SSRN Manuscript
[Preprint]. Available at:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304.

Wüthrich, M.V. and Merz, M. (2023) Statistical foundations of actuarial
learning and its applications. Springer. Available at:
https://doi.org/10.1007/978-3-031-12409-9.

74/74

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304
https://doi.org/10.1007/978-3-031-12409-9

	Feed-forward neural networks
	Universality theorems
	Gradient descent algorithm
	FNN example: French MTPL data
	Copyright
	References

